Swarm Intelligence in Text Document Clustering

نویسندگان

  • Xiaohui Cui
  • Thomas E. Potok
چکیده

In this chapter, we introduce three nature inspired swarm intelligence clustering approaches for document clustering analysis. The major challenge of today’s information society is being overwhelmed with information on any topic they are searching for. Fast and high-quality document clustering algorithms play an important role in helping users to effectively navigate, summarize, and organize the overwhelmed information. The swarm intelligence clustering algorithms use stochastic and heuristic principles discovered from observing bird flocks, fish schools, and ant food forage. Compared to the traditional clustering algorithms, the swarm algorithms are usually flexible, robust, decentralized, and self-organized. These characters make the swarm algorithms suitable for solving complex problems, such as document clustering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Swarm Intelligence Techniques in Document Management Systems

In the field of economics and business, the ever increasing amount of text documents written in different languages and the ever increasing dependence of people and organisations on such information require effective document retrieval, searching and classification mechanisms. Searching for groups of related documents has an important role in text mining and Document Management Systems. Swarm i...

متن کامل

A Joint Semantic Vector Representation Model for Text Clustering and Classification

Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...

متن کامل

Text Clustering Quality Improvement using a hybrid Social spider optimization

Text document clustering is one of the most widely studied data mining problems. It organizes text documents into groups such that each group has similar text documents. While grouping text documents, several issues have been observed. Accuracy and Efficiency are the main issues in text document clustering. Recently, as clustering problem can be mapped to optimization problem, evolutionary opti...

متن کامل

Computational Intelligence Methods for Clustering of Sense Tagged Nepali Documents

This paper presents a method using hybridization of self organizing map (SOM ), particle swarm optimization(PSO) and k-means clustering algorithm for document clustering. Document representation is an important step for clustering purposes. The common way of represent a text is bag of words approach. This approach is simple but has two drawbacks viz. synonymy and polysemy which arise because of...

متن کامل

Less-redundant Text Summarization using Ensemble Clustering Algorithm based on GA and PSO

In this paper, a novel text clustering technique is proposed to summarize text documents. The clustering method, so called ‘Ensemble Clustering Method’, combines both genetic algorithms (GA) and particle swarm optimization (PSO) efficiently and automatically to get the best clustering results. The summarization with this clustering method is to effectively avoid the redundancy in the summarized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010